Write your questions here!

We have learned how to solve linear systems by graphing and substitution. Now we will learn how to solve the linear systems by using a method called ______.

Steps for Solving Linear Systems by Elimination

Example 1: Solve the linear system using elimination:

$$3x - 4y = 10$$

 $5x + 4y = 6$

- Step 1: Do you have x over x, y over y and equal sign over equal sign? Yup! Continue on....
- Step 2: The y's are already opposites. Our work here is done.
- Step 3: Add the two equations. Solve the resulting equation.
- Step 4: Take the answer from <a>Step 3 and plug it into either of the original equations and solve for the other unknown variable.
- Step 5: Write your solution as a coordinate point or as a pair of values.

2 | 8.3: SOLVING SYSTEMS BY ELIMINATION

Write your questions here!

More Examples:

2.
$$2x - y = 12$$
$$-2x - 3y = -12$$

3.
$$x + 2y = 4$$

 $-6x + 2y = -10$

4.
$$4x - 3y = 8$$
$$2x - 2y = 0$$

5.
$$qx + 2y = 39$$
$$6x + 13y = -9$$

Practice 8.3 Systems of Equations (Elimination)

Show all of your work!

Solve each system by elimination.

1)
$$-4x - 4y = 8$$

 $-x + 4y = 12$

2)
$$3x + 2y = -3$$

 $-3x + y = 12$

3)
$$x-2y=-9$$

 $-4x-2y=-4$

4)
$$-2x + y = 4$$

 $-2x + 2y = 0$

5)
$$-4x - y = 8$$

 $-12x + 3y = -24$

6)
$$-x + 4y = -1$$

 $-2x - 8y = 14$

7)
$$-6x + 3y = 3$$

 $5x - 8y = -8$

8)
$$4x - 3y = -16$$

 $5x + 2y = 3$

9)
$$3x + 2y = 10$$

 $4x + 5y = 18$

10)
$$-5x - 6y = -3$$

 $2x + 4y = 6$

11) Is the point (0, 0) a solution of the system of linear equations below?

$$2x + y = 2$$
$$4x - 2y = 2$$

12) Is the point $(\frac{5}{4}, 7)$ a solution of the system of linear equations below?

$$4x + y = 12$$

 $-4x + 3y = 16$

Application and Extension

$$2x + 2y = 2$$

 $-8x + 4y = 16$

- 1. Solve the following system of equations using elimination.
- You have just enough coins to pay for a loaf of bread priced at \$1.95. You know you have a total of 12 coins, with only quarters and dimes. Let Q = the number of quarters and D = the number of dimes. Complete:

Now, solve the linear system using elimination.

(Hint: Multiply the second equation by -10!)

3. The table shows the number of apples needed to make apple pies and applesauce sold at a farm store. During a recent picking at the farm, 169 Granny Smith apples and 95 Red Delicious apples were picked. Write and solve a system to determine how many apple pies and how many batches of applesauce can be made if every apple is used. (Hint: read across each row to create your equations!)

Type of Apple	# Needed for π (Pie)	# Needed for Sauce	Total
Granny Smith	5	4	169
Red Delicious	3	2	95

3.	The Algebros are visting Michigan State University when they stumble upon a Girl Scout selling cookies. Sully orders 3 boxes of Tagalongs and 4 boxes of Somoas for \$26. Brust isn't statisfied with such a small order and yells "UPGRADE!!" He then upgrades the order to 5 boxes of Tagalongs and 6 Boxes of Somoas which costs \$41.
	 a. Write a system of linear equations to model the situation. (Let x = cost of a box of Tagalongs and y = cost of a box of Somoas.)
	b. Solve your system of equations above using elimination to find the cost of each type of cookie.