Write your questions here!

We learned 3 different ways to solve linear systems of equations: graphing, substitution and elimination. But sometimes, weird things can happen:

Examples:

Solve each linear system by graphing:

1.
$$y = \frac{1}{2}x - 4$$

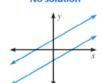
$$y = \frac{1}{2}x + 2$$

$$2. \quad 5x + 3y = 6$$

$$3y = -5x - 3$$

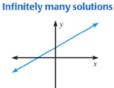
Possible Outcomes When Solving by Graphing

Number of Solutions of a Linear System


One solution

CONCEPT SUMMARY

The lines intersect.


The lines have different slopes. No solution

The lines are parallel.

The lines have the same slope and different y-intercepts.

For Your Notebook

The lines coincide.

The lines have the same slope and the same y-intercept.

You try! Solve each linear system by graphing. (Be sure to solve for y first!)

3.
$$y = 3x - 6$$

$$y - 3x = 1$$

4.
$$y = 4x - 1$$

$$-2y = -8x + 2$$

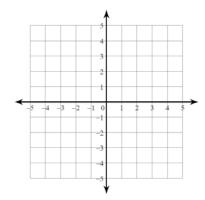
So what does this look like when solving by substitution and elimination?

Solve by substitution:

Solve by substitution:
5.
$$-16x + 2y = -2$$

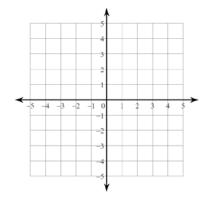
 $y = 8x - 1$
Solve by elimination:
6. $-18x + 6y = 24$
 $3x - y = -2$

$$V = 8x - 1$$


6.
$$-18x + 6v = 24$$

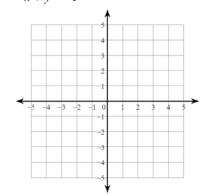
$$3x - y = -2$$

		POSSIBLE OUTCOMES		
		No Solution	1 Unique Solution	Infinitely Many Solutions
METHOD OF SOLVING	Graphing	Parallel Lines	Lines Intersect Once	Both Lines are the Same When Graphed
	Substitution or Elimination	Variables Cancel; Sides Not Equal	Each Variable Has One Solution	Variables Cancel; Sides are Equal


Solve each system by graphing.

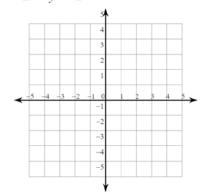
1)
$$y = -x - 4$$

 $y = x - 2$



2)
$$y = \frac{1}{2}x + 2$$

 $y = \frac{1}{2}x - 3$


$$y = \frac{1}{2}x - 3$$

3)
$$x + y = 3$$

 $x + y = -1$

4)
$$2x - y = -4$$

 $2x - y = -2$

Solve each system by elimination.

5)
$$-3x + 7y = -2$$

 $6x - 14y = 4$

6)
$$16x - 4y = -4$$

 $-8x + y = -3$

7)
$$9x + 15y = -12$$

 $-3x - 5y = 7$

8)
$$-5x - 4y = -1$$

 $10x + 8y = 2$

Solve each system by substitution.

9)
$$12x - 2y = 3$$

 $y = 6x - 2$

10)
$$y = 3x + 21$$

 $-9x + 3y = 63$

11)
$$3x - 6y = -6$$

 $y = x - 2$

12)
$$y = -8x - 1$$

 $24x + 3y = -3$