Rational and Radical Inequalities

What are we going to do?

- ~ Solve Rational Inequalities using a graphing calculator and algebraically
- ~Solve Radical Inequalities using a graphing calculator and algebraically

Technology Works Wonders

Rational Inequality: an inequality that contains one or more rational expressions

Y1:
$$\frac{x}{(x-4)}$$

 $\frac{x}{x-4} \le 2$

Y2: 2

Use your table.

Radical Inequality: an inequality that contains a variable within a radical $\sqrt{2x+4} \le 4$

Y1: $\sqrt{2x+4}$

5 10 15 2

Y2: 4

Solve the following using your graphing calculator:

a)
$$\frac{x}{x-3} \ge 4$$

b)
$$\frac{8}{x+1} < -2$$

c)
$$\sqrt{x-3} + 2 \le 5$$

d)
$$\sqrt[3]{x+2} \ge 1$$

Solving Rational Inequalities Algebraically

$$\frac{(x^2+x-12)}{(x-1)} \leq 0$$

1) Solve for the zeros of the function.

2) Solve for where the inequality is undefined.

26 3) Create a sign analysis chart.

$$\frac{3}{x-2} \le -1$$

This is the same process as the example above but make it a comparison to 0.

$$\frac{3}{x-2} + 1 \le 0$$
 LCD(x-2)

$$\begin{array}{c}
\frac{3}{(x-2)} + \frac{x-2}{x-2} \leq 0 \\
\times + 1 = 0 \\
\times + 1 = 0
\end{array}$$

Solving Radical Inequalities

$$\sqrt{x-3} + 2 \le 5$$

$$\sqrt{2} - 2$$

$$(\sqrt{x-3}) \le (3)^2$$

1) Solve for x.

2) Be sure the radicand is not negative.

3) Compare the solution regions.

