Radical Expressions and Rational Exponents

Section 5.6

Totally Radical Objectives:

- ~Rewrite radical expressions by using rational exponents.
- ~Simplify and evaluate radical expressions and expressions containing rational exponents.

How Can I write this?

5 and -5 are square roots of 25 because...

2 is the cube root of 8 because...

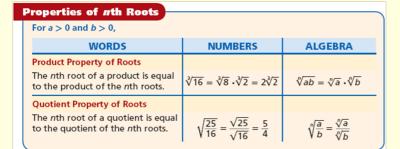
2 and -2 are fourth roots of 16 because...

So, a is the *n*th root of b if ...

Finding Real Roots

The nth root of a real number a can be written as the radical expression $\sqrt[n]{a}$, where n is the \underline{index} of the radical and a is the radicand.

When a number has more than one root, the radical sign indicates only the principal, or positive, root.


Numbers and Types of Real Roots				
Case Roots Example		Example		
Odd index	1 real root	The real 3rd root of 8 is 2.		
Even index; positive radicand	2 real roots	The real 4th roots of 16 are ± 2 .		
Even index; negative radicand	0 real roots	–16 has no real 4th roots.		
Radicand of 0	1 root of 0	The 3rd root of 0 is 0.		

Find all real roots.

A. sixth roots of 64

B. cube roots of -216

C. fourth roots of -1024

Simplify each expression. Assume that all variables are positive.

A)
$$\sqrt[4]{81}x^{12}$$

C)
$$\sqrt[3]{X^7} \cdot \sqrt[3]{X^2}$$

Try This!

Try This!

$$\frac{+5\sqrt{3}}{80\sqrt{3}}$$

$$\frac{1}{80}\sqrt{3}$$

$$\frac{1}{80}\sqrt{$$

Rational Exponents

ional exponent is an exponent that can be essed as $\frac{m}{n}$, where m and n are integers and Radical expressions can be written by using hal exponents.

	l l		
$\wedge \wedge \rightarrow$	exponent		
\sim	root/index		
• •			

Rational Exponents

For any natural number n and integer m,

WORDS	NUMBERS	ALGEBRA
The exponent $\frac{1}{n}$ indicates the <i>n</i> th root.	$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$	$a^{\frac{1}{n}} = \sqrt[n]{a}$
The exponent $\frac{m}{n}$ indicates the <i>n</i> th root raised to the <i>m</i> th power.	$8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$

Writing Expressions in Radical Form

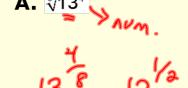
Write the expression (−32) in radical form and simplify.

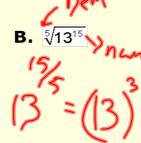
$$(-32)^{3/5} = (5/-32)^{3} = (-2)^{3} = -8$$

$$= 5/(-32)^{3} = -8$$

Write the expression $64^{\frac{1}{3}}$ in radical form, and simplify.

Try these!


Write the expression $4^{\frac{5}{2}}$ in radical form, and simplify.


Write the expression $625^{\frac{3}{4}}$ in radical form, and simplify.

Write each expression by using rational

exponents.

More Review?

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n.

For all nonzero real numbers a and b and rational numbers m and n,				
WORDS	NUMBERS	ALGEBRA		
Product of Powers Property				
To multiply powers with the same base, add the exponents.	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}} = 12^{\frac{1}{2} + \frac{3}{2}} = 12^2 = 144$	a ^m • a ⁿ = a ^{m + n}		
Quotient of Powers Property				
To divide powers with the same base, subtract the exponents.	$\frac{125^{\frac{2}{3}}}{\frac{1}{125^{\frac{2}{3}}}} = 125^{\frac{2}{3} - \frac{1}{3}} = 125^{\frac{1}{3}} = 5$	$\frac{a^m}{a^n} = a^{m-n}$		
Power of a Power Property				
To raise one power to another, multiply the exponents.	$\left(8^{\frac{2}{3}}\right)^3 = 8^{\frac{2}{3} \cdot 3} = 8^2 = 64$	$(a^m)^n = a^{m \cdot n}$		
Power of a Product Property				
To find the power of a product, distribute the exponent.	$(16 \cdot 25)^{\frac{1}{2}} = 16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}} = 4 \cdot 5$ $= 20$	$(ab)^m = a^m b^m$		
Power of a Quotient Property				
To find the power of a quotient, distribute the exponent.	$\left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}} = \frac{2}{3}$	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$		

Simplify each expression.

a)

$$7^{\frac{7}{9}} \bullet 7^{\frac{11}{9}}$$

b)
$$\frac{16^{\frac{3}{4}}}{16^{\frac{5}{4}}} = \frac{34.5}{4}$$

$$\frac{16^{\frac{3}{4}}}{16^{\frac{5}{4}}} = \frac{34.5}{4}$$

$$\frac{-34}{16} = \frac{-34}{16} = \frac$$