Do Now:

Please place a magnet on the emoji that best describes your feelings about the midterm process as a whole.

Solve:
$$(3)(x-3)(5)(x-3)$$

 $(x-3)+(2)=(x-3)(x-3)$
 $(x-3)+(2)=(x-3)(x-3)$
 $(x+2-3)=0$
 $(x+8)(x-3)=0$
 $(x-8)(x-3)=0$

Mini Unit: Rational Expressions

- ~ Applications
- ~ Rational Inequalities
- ~ Graphing Rational Functions

Applications of Rational Equations

How fast can you row?

Objectives:

- ~ To construct a rational equation based on a given scenario
- ~ To solve rational equations

Rational Applications

Solving the application is just like solving an equation.

But we have to construct the equation based on the situation given.

Work Rate:

Example 1)

~ Work rate problems usually involve two people that are trying to help each other finish a single job.

Fran can clean the garage in 3 hours, but it takes Angie 4 hours to do the same job. How long would it take them to clean the garage if they worked together?

LCD: 12x

$$4x + 3x = 10$$
 $x = 1.7$ hrs. $\frac{7x}{3} = \frac{10}{3}$

If they worked together, it would take Lines.

Example 2) Wind / Current

Garth can row 5 miles per hour in still water. It takes him as long to row 4 miles upstream as 16 miles downstream. How fast is the current?

Equations for rate, distance and time:

A table can be beneficial here:

Upstream

Upstream

$$6m_i$$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$
 $16m_i$

Example 3) Kayaking

A kayaker spends an afternoon paddling on a river. She travels 3 mi upstream and 3 mi downstream in a total of 4 hours. In still water, the kayaker can travel at an average speed of 2mi/h. Based on this information, what is the average speed of the river's current? Is your answer reasonable?

Try this!

Jason can clean a large tank at an aquarium in about 6 hours. When Jason and Lacy work together, they can clean the tank in about 3.5 hours. About how long would it take Lacy to clean the tank by herself?

rate =
$$\frac{100}{158.33}$$
 = .6°(/min)

Atemp rate Time

First 50°C 15°C/min $\frac{50}{1.5}$ = 33.33 min

2nd 50°C 0.4°/min $\frac{50}{.4}$ = 125 min

Total: 100 Total: 158.33