Do Now:

a)
$$\sqrt{72}$$
 $\sqrt{36}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{6}$

b)
$$\sqrt{180}$$
 $\sqrt{36}$
 $\sqrt{5}$
 $\sqrt{6}$

Radical Expressions and Rational Exponents

Section 5.6

Totally Radical Objectives:

- ~Rewrite radical expressions by using rational exponents.
- ~Simplify and evaluate radical expressions and expressions containing rational exponents.

How Can I write this?

5 and -5 are square roots of 25 because...

$$(5)^{2} = 25 (-5)^{2} = 25$$

$$(-5)^{2} = 25$$

2 is the cube root of 8 because...

$$(2)^3 = 8$$

2 and -2 are fourth roots of 16 because...

$$(2)^{4} = (-2)^{4} = 16$$

So, a is the nth root of b if ...

Finding Real Roots

The nth root of a real number a can be written as the radical expression $\sqrt[n]{a}$, where n is the <u>index</u> of the radical and a is the radicand.

When a number has more than one root, the radical sign indicates only the principal, or positive, root.

Numbers and Types of Real Roots				
Case	Roots	Example		
Odd index	1 real root	The real 3rd root of 8 is 2.		
Even index; positive radicand	2 real roots	The real 4th roots of 16 are ±2.		
Even index; negative radicand	0 real roots	-16 has no real 4th roots.		
Radicand of 0	1 root of 0	The 3rd root of 0 is 0.		

Find all real roots.

A. sixth roots of 64

B. cube roots of -216

C. fourth roots of -1024

Properties of nth Roots		
For $a > 0$ and $b > 0$,		
WORDS	NUMBERS	ALGEBRA
Product Property of Roots		
The <i>n</i> th root of a product is equal to the product of the <i>n</i> th roots.	$\sqrt[3]{16} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$	$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$
Quotient Property of Roots		
The <i>n</i> th root of a quotient is equal to the quotient of the <i>n</i> th roots.	$\sqrt{\frac{25}{16}} = \frac{\sqrt{25}}{\sqrt{16}} = \frac{5}{4}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Simplify each expression. Assume that all variables are positive.

Try This!

b)
$$\sqrt[4]{\chi^8} \cdot \sqrt[3]{\chi^4}$$

$$\times^2 \cdot \times \sqrt[3]{\chi}$$

$$\times^3 \sqrt[3]{\chi}$$

$$\frac{\sqrt[3]{x^5}}{4}$$

$$\frac{\sqrt[3]{x^2}}{4}$$

$$3\sqrt{\frac{5}{4}} = \frac{3\sqrt{5}}{3\sqrt{4}} = \frac{1}{3\sqrt{4}} \frac{3\sqrt{5}}{3\sqrt{4}} \frac{1}{3\sqrt{2}} \frac{3\sqrt{5}}{3\sqrt{4}} \frac{3\sqrt{5}}{3\sqrt{2}} \frac{3\sqrt{5}}$$

$$\frac{\times \sqrt[3]{2}x^2}{\sqrt[3]{8}} = \frac{\times \sqrt[3]{2}x^3}{2}$$

Rational Exponents

A <u>rational exponent</u> is an exponent that can be expressed as $\frac{m}{n}$, where m and n are integers and $n \neq 0$. Radical expressions can be written by using rational exponents.

Rat	ional	Exponen	ts

For any natural number n and integer m.

· ·· · ·· · · · · · · · · · · · · · ·		
WORDS	NUMBERS	ALGEBRA
The exponent $\frac{1}{n}$ indicates the <i>n</i> th root.	$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$	$a^{\frac{1}{n}} = \sqrt[n]{a}$
The exponent $\frac{m}{n}$ indicates the <i>n</i> th root raised to the <i>m</i> th power.	$8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$

Writing Expressions in Radical Form

Write the expression $(-32)^{\frac{3}{5}}$ in radical form and simplify. 32

Write the expression $64^{\frac{1}{3}}$ in radical form, and 64/3=(4)=4 simplify.

8

Try these!

Write the expression $4^{\frac{5}{2}}$ in radical form, and simplify.

$$4^{5/2} = (4)^{5} = 32$$

$$625^{3/4} = (4)(25)^{3} = (5)^{3} = 125$$

Write the expression $625^{\frac{3}{4}}$ in radical form, and simplify.

Backwards

Write each expression by using rational exponents.

More Review?

WORDS	NUMBERS	ALGEBRA
Product of Powers Property		
To multiply powers with the same base, add the exponents.	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}} = 12^{\frac{1}{2} + \frac{3}{2}} = 12^2 = 144$	$a^m \cdot a^n = a^{m+n}$
Quotient of Powers Property		
To divide powers with the same base, subtract the exponents.	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}} = 125^{\frac{2}{3} - \frac{1}{3}} = 125^{\frac{1}{3}} = 5$	$\frac{a^m}{a^n} = a^{m-n}$
Power of a Power Property		
To raise one power to another, multiply the exponents.	$\left(8^{\frac{2}{3}}\right)^3 = 8^{\frac{2}{3} \cdot 3} = 8^2 = 64$	$\left(a^{m}\right)^{n}=a^{m\cdot n}$
Power of a Product Property		
	$(16 \cdot 25)^{\frac{1}{2}} = 16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}} = 4 \cdot 5$ $= 20$	$(ab)^m = a^m b^m$
Power of a Quotient Property		
product, distribute the exponent. Power of a Quotient Property To find the power of a quotient, distribute the exponent.	$(16 \cdot 25)^2 = 16^2 \cdot 25^2 = 4 \cdot 5$ $= 20$ $\left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}} = \frac{2}{3}$	$(ab)^m = \frac{ab}{b}$

Simplify each expression.

a)
$$7^{\frac{7}{9}} \cdot 7^{\frac{11}{9}}$$
 $7^{\frac{18}{9}} = 7^{\frac{11}{9}} + 49$
 $\times \times \times$

b)
$$\frac{16^{\frac{3}{4}}}{16^{\frac{5}{4}}} \frac{16}{16} = \frac{1}{4}$$

Section 5.6.notebook

February 20, 2018