Word Problems!

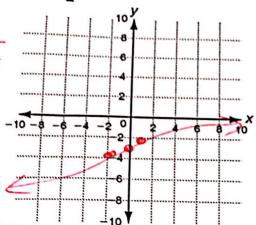
1) A framing store uses the function $c(a) = .5\sqrt{a} + 2$ to determine the cost c in dollars of glass for a picture with an area a in square inches. The store charges an addition \$6.00 in labor to install the glass. Write the function d for the total cost of a piece of glass, including installation, and use it to estimate the total cost of glass for a picture with an area of 192 in².

(lost = c(a) = .5
$$\sqrt{a}$$
 +2 d(a) = .5 \sqrt{a} +5 Installation = 6.00 $a = 192 \Rightarrow .5 \sqrt{192}$ +8 $d = (0st + installation)$ $d(192) = 8/4.92$

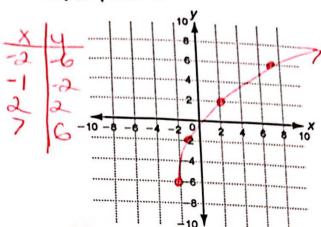
2) Special airbags are used to protect scientific equipment when a rover lands on the surface of Mars. On Earth, the function $f(x) = \sqrt{64x}$ approximates an object's downward velocity in feet per second as the object hits the ground after bouncing x ft in height.

The downward velocity function for the Moon is a horizontal stretch of f by a factor of about $\frac{25}{4}$. Write the velocity function h for the Moon, and use it to estimate the downward velocity of a landing craft at the end of a bounce 50 ft in height.

$$f(x) = \sqrt{64x}$$

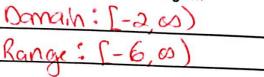

Moon = hori stretch by $\frac{25}{4}$
 $g(x) = \sqrt{(64)(\frac{1}{4})}(x) = \sqrt{\frac{256}{25}}x = \frac{16}{5\sqrt{x}}$
 $g(50) = \frac{16}{5}\sqrt{50} = \sqrt{23.63}$ H/sec

Practice C


Radical Functions

Graph each function or inequality.

1.
$$g(x) = \frac{1}{2}\sqrt[3]{x} - 3$$



2.
$$y = 4\sqrt{x+2} - 6$$

a. Identify the domain and range.

a. Describe the solution region.

Use the description to write the square root function g.

3. The parent function $f(x) = \sqrt{x}$ is compressed vertically by a factor of $\frac{1}{4}$, reflected across the x-axis, and translated 6 units up.

Verteemp $\frac{1}{4} = \frac{1}{4}\sqrt{x}$ Peffect x-axis = $-\frac{1}{4}\sqrt{x}$ Sounts up = $-\frac{1}{4}\sqrt{x}$ +6

4. The parent function $f(x) = \sqrt{x}$ is translated 8 units left, with $\sqrt{x+f}$, reflect across years reflected across the y-axis, and stretched horizontally by a factor of 3.

Solve.

5. The frequency, f, in Hz, at which a simple pendulum rocks back and forth is given by $f = \frac{1}{2\pi} \sqrt{\frac{g}{I}}$, where g is the strength of the gravitational field at the location

of the pendulum, and *I* is the length of the pendulum.

a. Find the frequency of a pendulum whose length is 1 foot and where the gravitational field is

is 1 foot and where the gravitational field is approximately 32 ft/s².

l=1 g=32 $f=\frac{1}{4\pi}\sqrt{\frac{34}{1}}=.9003$ Hz

b. The strength of the gravitational field on the moon is about $\frac{1}{6}$ as strong as on Earth. Find the frequency of the same pendulum on the moon.

Scanned by CamScanner